KH

Cho a, b, c đôi một khác nhau thỏa mãn (a + b)/c = (b + c)/a = (c + a)/b). Tính giá trị của biểu thức P = (1 + a/b)(1 + b/c)(1 + c/a)

GV
11 tháng 10 2017 lúc 15:07

Dựa vào tính chất dãy tỉ số bằng nhau:

  \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Suy ra:

   \(a+b=2c;b+c=2a;c+a=2b\)

Từ đẳng thức đầu a + b = 2 c  => a = 2c - b thay vào 2 đẳng thức cuối ta có:

   \(b+c=2\left(2c-b\right)\)  và \(c+\left(2c-b\right)=2b\)

=> b = c => a = c

Vậy a = b = c

Khi đó:

  \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

Bình luận (1)

Các câu hỏi tương tự
MT
Xem chi tiết
HT
Xem chi tiết
DM
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NP
Xem chi tiết
CL
Xem chi tiết
TH
Xem chi tiết
VA
Xem chi tiết