NP

cho a b c d thuộc z thỏa mãn a+b=c+d và a^2+b^2=c^2+d^2 CMR a^2014+b^2014=c^2014+d^2014

ST
16 tháng 4 2017 lúc 12:46

Ta có: a2 + b2 = c2 + d2 

=> a2 - c2 = d2 - b2

=> (a - c)(a + c) = (d - b)(d + b)

Mà a + b = c + d

=> a - c = d - b

+) Nếu a = c

=> a - c = d - b = 0

=> d = b

=> a2014 = c2014 và d2014 = b2014 

=> a2014 + b2014 = c2014 + d2014              (1)

+) Nếu a \(\ne\) c

=> a - c = d - b  (khác 0)

=> d \(\ne\)

Có (a - c)(a + c) = (d - b)(d + b)

=> a + c = d + c                     (2)

Mà a + b = c + d                     (3)

Lấy (2) + (3) ta được:

2a + b + c = 2d + b + c

=> 2a = 2d

=> a = d

=> c = b

=> a2014 = d2014 và c2014 = b2014

=> a2014 + b2014 = c2014 + d2014                 (4)

Kết hợp (1) và (4) ta được: a2014 + b2014 = c2014 + d2014 (ĐPCM)

Bình luận (0)

Các câu hỏi tương tự
RR
Xem chi tiết
KG
Xem chi tiết
LD
Xem chi tiết
WS
Xem chi tiết
VD
Xem chi tiết
VD
Xem chi tiết
NH
Xem chi tiết
WR
Xem chi tiết
PH
Xem chi tiết