ta có : a^2 +b^2 =c^2 +d^2 => a^2 -c^2=d^2-b^2
<=> (a-c)(a+c)=(d-b)(d+b) (1)
Mặt khác : a+b=c+d => a-c=d-b (2)
Từ (1),(2) => (a-c)(a+c-d-b)=0
\(\Rightarrow\orbr{\begin{cases}a-c=0\\a+c-d-b=0\end{cases}}\)
xét TH1: a-c=0 =>a=c mà a+b=c+d => a=c ; b=d
=> a^2002 +b^2002 =c^2002 +d^2002 (đpcm
xét TH2: a+c-d-b=0
\(\Rightarrow\hept{\begin{cases}a-b=d-c\\a+b=c+d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}a=d\\b=c\end{cases}}\) \(\Rightarrow a^{2002}+b^{2002}=c^{2002}+d^{2002}\) (đpcm)