LL

cho a; b; c; d là 4 số khác 0 thỏa mãn: b2=ac ; c2=bd và b3 + c3 + d3 khác 0

chứng minh rằng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

giúp mình nha. mình đang cần gấp

LA
5 tháng 11 2021 lúc 7:35

Ta có:

\(b^2=ac\rightarrow\frac{a}{b}=\frac{b}{c}\) ( \(b\ne0,c\ne0\)

\(c^2=bd\rightarrow\frac{b}{c}=\frac{c}{d}\) \(d\ne0\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\rightarrow\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\) ( \(bcd\ne0\)vì \(b^3+c^3+d^3\ne0\))

áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\rightarrow\frac{abc}{bcd}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

\(\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NB
Xem chi tiết
HA
Xem chi tiết
LT
Xem chi tiết
BK
Xem chi tiết
NH
Xem chi tiết
LC
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết