cho a,b,c,d la 4 so khac 0 thoa man b^2 =ac va c^2=bd.Cmr\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)=\(\frac{a}{b}\)
Cho a,b,c,d là 4 số khác 0 thoả mãn\(b^2=ac,c^2=bd\) và\(b^3+c^3+d^3\)khác 0. Chứng minh rằng:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}=\frac{a}{d}\)
Cho a,b,c,d khác 0 và b2=ac,c2=bd. Chứng minh : \(\frac{a^3 +b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Cho a,b,c,d là 4 số khác 0 thỏa mãn b2=ac, c2=bd và b3+c3+d3 khác 0. Chứng minh rằng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Cho các số a , b , c , d khác 0 và b3 + c3 + d3 khác 0 thỏa mãn : b2 = ac ; c2 = bd
Chứng minh rằng :
\(\frac{a^3+b^3+c^3}{b^3+c^3+d\text{ }^3}=\frac{a}{d}\)
Bài 1: cho tỷ lệ thức a/b=c/d khác 1 và -1 và c khác 0. Hãy chứng minh:
A) \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)
B) \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)
Bài 2: cho biết a=c+b và c=bd/b-d(b khác d khác 0). Hãy chứng minh a/b=c/d.
Bài 3:Hãy chứng minh c =0 khi \(\frac{a+b+c}{a+b-c}=\frac{a+b+c}{a-b-c}\) với b khác 0
Cho a,b,c,d là 4 số khác 0 thỏa mãn điều kiện: \(b^2=ac,c^2=bd,b^3+c^3+d^3khác0\)
Chứng minh rằng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Cho a, b, c, d là 4 số khác 0 thyoar mãn b^2 = ac và c^2 = bd
Chứng minh rằng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)=\(\frac{a}{d}\)
Cho 4 số khác 0 là a;b;c;d thoả mãn b2=ac; c2=bd. Chứng minh: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)