Do \(a^2+b^2+c^2=5\Rightarrow a^2,b^2,c^2\le5\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le\sqrt{5}\)
\(\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le2\)
\(\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\in\left\{0;1;2\right\}\)
Mà \(a+b+c=3\) và \(a^2+b^2+c^2=5=0^2+1^2+2^2\)
\(\text{nên }\left(a,b,c\right)\in\left\{\left(0;1;2\right);\left(0;2;1\right);\left(1;0;2\right);\left(1;2;0\right);\left(2;1;0\right);\left(2;0;1\right)\right\}\)
Với mỗi cặp như vậy, \(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)=\left(0+2\right)\left(1^2+2\right)\left(2^2+2\right)=36=6^2\)
là số chính phương.