KB

 cho a, b, c > 0 và a + b + c = 1. tìm GTLN của 

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

KS
29 tháng 10 2019 lúc 15:28

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=a-\frac{a^2}{a+1}+b-\frac{b^2}{b+1}+c-\frac{c^2}{c+1}\)

\(=1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\)

Áp dụng bất đẳng thức Cauchy dạng phân thức 

\(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{1}{1+3}=\frac{1}{4}\)

\(\Rightarrow1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\le1-\frac{1}{4}=\frac{3}{4}\)

\(\Rightarrow GTLN=\frac{3}{4}\) 

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LC
Xem chi tiết
PD
Xem chi tiết
LL
Xem chi tiết
OO
Xem chi tiết
LN
Xem chi tiết
HB
Xem chi tiết
IU
Xem chi tiết
PN
Xem chi tiết
HP
Xem chi tiết