Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

HS

Cho a, b, c > 0 thỏa mãn abc = 1; Chứng minh rằng : \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)

SN
30 tháng 4 2016 lúc 9:16

Áp dụng BĐT Cô-si ta có:

\(a^2+b^2\ge2ab;b^2+1^2\ge2b\)

\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2\)

\(\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}=\frac{1}{2}.\frac{1}{ab+b+1}\)

chứng minh tương tự

\(\Rightarrow\frac{1}{b^2+2c^2+3}\le\frac{1}{2}.\frac{1}{bc+c+1};\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ac+a+1}\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ab+b+1}+\frac{1}{2}.\frac{1}{bc+c+1}+\frac{1}{2}.\frac{1}{ac+a+1}\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)

đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\)

\(=\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\)

\(=\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}=\frac{ac+a+1}{ac+a+1}=1\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.1=2\)

=>đpcm

Bình luận (0)
PT
30 tháng 4 2016 lúc 9:10
Bài này mk giải được nè chiều mk giải cho nha
Bình luận (0)
SN
30 tháng 4 2016 lúc 9:17

mình mới lớp 7 nên có gì sai mong được chỉ bảo

Bình luận (0)
NN
30 tháng 4 2016 lúc 9:41

lớp 7 đấy ư??? học trước chương trình à?

Bình luận (0)
LC
30 tháng 4 2016 lúc 9:49

Thành lấy bài tau hay thế, http://olm.vn/hoi-dap/question/559729.html

Bình luận (0)

Các câu hỏi tương tự
LL
Xem chi tiết
FA
Xem chi tiết
YY
Xem chi tiết
LD
Xem chi tiết
SL
Xem chi tiết
HM
Xem chi tiết
SL
Xem chi tiết
XT
Xem chi tiết
KT
Xem chi tiết