Violympic toán 9

HD

cho a, b, c > 0 và \(a^2+b^2+c^2=3\) C/m \(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\)

NL
2 tháng 7 2020 lúc 22:56

\(\sum\frac{a}{a^2+1+2b+2}\le\sum\frac{a}{2a+2b+2}\)

Nên ta chỉ cần chứng minh: \(\sum\frac{a}{2a+2b+2}\le\frac{1}{2}\Leftrightarrow\sum\frac{a}{a+b+1}\le1\)

\(\Leftrightarrow\sum\frac{b+1}{a+b+1}\ge2\)

Đặt \(P=\sum\frac{b+1}{a+b+1}=\sum\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}=\sum\frac{\left(b+1\right)^2}{ab+a+b^2+2b+1}\)

\(P\ge\frac{\left(a+b+c+3\right)^2}{ab+a+b^2+2b+1+bc+b+c^2+2c+1+ca+c+a^2+2a+1}\)

\(P\ge\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)+6\left(a+b+c\right)+9}{a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3}\)

\(P\ge\frac{2\left(ab+bc+ca\right)+6\left(a+b+c\right)+12}{ab+bc+ca+3\left(a+b+c\right)+6}=2\) (đpcm)

Dấu "=" xảy rakhi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
PC
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
LQ
Xem chi tiết
TQ
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
NN
Xem chi tiết
TQ
Xem chi tiết