Violympic toán 9

PP

Cho a, b,c là các số thực dương thỏa mãn: a+b+c=1

Tìm Min của A=\(\frac{1}{2a-a^2}+\frac{1}{2b-b^2}+\frac{1}{2c-c^2}\)+3

NL
24 tháng 9 2019 lúc 12:38

Ta có đánh giá: \(\frac{1}{2a-a^2}\ge\frac{81-108a}{25}\) \(\forall a\in\left(0;1\right)\)

Thật vậy, BĐT tương đương:

\(\left(81-108a\right)\left(2a-a^2\right)\le25\)

\(\Leftrightarrow108a^3-297a^2+162a-25\le0\)

\(\Leftrightarrow\left(3a-1\right)^2\left(25-12a\right)\ge0\) (luôn đúng \(\forall a\in\left(0;1\right)\))

Tương tự: \(\frac{1}{2b-b^2}\ge\frac{81-108b}{25}\) ; \(\frac{1}{2c-c^2}\ge\frac{81-108c}{25}\)

Cộng vế với vế:

\(\Rightarrow A\ge\frac{243-108\left(a+b+c\right)}{25}+3=\frac{42}{5}\)

\(A_{min}=\frac{42}{5}\) khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)