Violympic toán 9

H24

Cho a, b, c > 0 thỏa mãn: a + b + c = 2

CM: \(\sqrt[3]{\frac{1}{a}}+\sqrt[3]{\frac{1}{b}}+\sqrt[3]{\frac{1}{c}}\ge\frac{3\sqrt[3]{12}}{2}\)

NL
28 tháng 9 2019 lúc 22:19

Đặt \(\left(a;b;c\right)=\left(x^3;y^3;z^3\right)\Rightarrow x^3+y^3+z^3=2\)

Ta có: \(x^3+\frac{2}{3}+\frac{2}{3}\ge3\sqrt[3]{x^3.\frac{4}{9}}=\sqrt[3]{12}x\)

Tương tự: \(y^3+\frac{2}{3}+\frac{2}{3}\ge\sqrt[3]{12}y\); \(z^3+\frac{2}{3}+\frac{2}{3}\ge\sqrt[3]{12}z\)

\(\Rightarrow x^3+y^3+z^3+4\ge\sqrt[3]{12}\left(x+y+z\right)\)

\(\Rightarrow x+y+z\le\frac{6}{\sqrt[3]{12}}=\sqrt[3]{18}\)

Ta có: \(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\ge\frac{9}{\sqrt[3]{18}}=\frac{3\sqrt[3]{12}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt[3]{\frac{2}{3}}\) hay \(a=b=c=\frac{2}{3}\)

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NO
Xem chi tiết
LQ
Xem chi tiết
VP
Xem chi tiết
DA
Xem chi tiết