Cho a, b, c>0 . CMR:
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\ge\frac{a+b+c}{3}\)
Cho a,b,c >0
CMR:\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{a^2+ac+c^2}\ge\frac{a+b+c}{3}\)
Câu 1 : Cho a,b,c>0 thỏa mã ab+bc+ac=3. CMR : \(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}\ge abc\)
Câu 2 : Cho a,b,c>0. CMR: \(\frac{2}{a}+\frac{6}{b}+\frac{9}{c}\ge\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\)
CMR với a ; b ;c > 0 và a + b+ c = 3 .CMR :
\(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\ge\frac{3}{2}\)
cho a;b;c >0. CMR:
\(P=\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ac+3a^2}\ge a+b+c\)
Với a>0,b>0,c>0
Cmr: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ac\)
Gợi ý: áp dụng bđt \(^{a^3+b^3\ge ab\left(a+b\right)}\)
Cho a,b,c là các số dương thỏa a+b+c=1.CMR:
\(\frac{bc}{a+bc}+\frac{ac}{b+ac}+\frac{ab}{c+ab}\ge\frac{3}{4}\)
Cho a,b,c>0. Cmr:
\(\frac{a}{\sqrt{ab+b^2}}+\frac{b}{\sqrt{bc+b^2}}+\frac{c}{\sqrt{ac+c^2}}\ge\frac{3\sqrt{2}}{2}\)
cho a,b,c là các số thực dương: a+b+c=1
CMR \(\frac{ab}{ab+c}+\frac{ac}{ac+b}+\frac{bc}{bc+a}\ge\frac{3}{4}.\)