Chương I - Căn bậc hai. Căn bậc ba

ZZ

Cho a , b , c > 0 . CMR : \(\dfrac{c}{a+b}+\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{a+c}{b}\ge\dfrac{15}{2}\)

PL
23 tháng 7 2018 lúc 10:54

Căn bậc hai. Căn bậc ba

Bình luận (0)
EC
23 tháng 7 2018 lúc 10:13

Đặt \(A=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}\)

\(=\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{a}{b}+\dfrac{c}{b}\)

Áp dụng bất đẳng thức :

\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\)

\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\)

\(\dfrac{b}{a}+\dfrac{a}{b}\ge2\)

\(\Rightarrow\dfrac{a}{c}+\dfrac{c}{a}+\dfrac{b}{c}+\dfrac{c}{b}+\dfrac{b}{a}+\dfrac{a}{b}\ge6\)

Đặt \(B=\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\)

\(\Rightarrow B+3=\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{a+c}+1\)

\(=\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}\)

\(=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)

Ta có : \(2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)

\(=\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\)

\(\Rightarrow B+3\ge\dfrac{9}{2}\Rightarrow B\ge\dfrac{3}{2}\)

\(\Rightarrow A+B\ge\dfrac{15}{2}\)

Dấu " = " xảy ra khi a = b = c .

Bình luận (0)

Các câu hỏi tương tự
ZZ
Xem chi tiết
PK
Xem chi tiết
H24
Xem chi tiết
PK
Xem chi tiết
HN
Xem chi tiết
VT
Xem chi tiết
AD
Xem chi tiết
Xem chi tiết
H24
Xem chi tiết