Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CMR: Với mọi a;b;c>0
\(\frac{2b+3c}{a+2b+3c}+\frac{2c+3a}{b+2c+3a}+\frac{2a+3b}{c+2a+3b}\ge\frac{5}{2}\)
cho a,b,c là các số thực không âm thõa mãn a^2+b^2+c^2>0 CMr (3a^2-bc)/(2a^2+b^2+c^2)+(3b^2-ca)/(2b^2+a^2+c^2)+(3c^2-ab)/(2c^2+a^2+c^2) =<3/2
cho a,b,c là các số thực không âm thõa mãn a^2+b^2+c^2>0 CMr (3a^2-bc)/(2a^2+b^2+c^2)+(3b^2-ca)/(2b^2+a^2+c^2)+(3c^2-ab)/(2c^2+a^2+c^2) =<3/2
với các số a,b,c là các số thực thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3
CMR (a+2b) (b+2c) (c+2a) = 1
với các số a,b,c là các số thực thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3
CMR (a+2b) (b+2c) (c+2a) = 1
với các số a,b,c là các số thực thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3
CMR (a+2b) (b+2c) (c+2a) = 1
Cho a, b, c > 0 . CMR :
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ca}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
Chứng minh với a,b,c>0 thì\(a^3b+b^3c+c^3a\ge a^2b^2+b^2c^2+c^2a^2\)
a, a,b,c>0. CMR:\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ac}{a+c+2b}\le\dfrac{a+b+c}{4}\)
b, a,b,c>0. CMR:\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{a+b+c}{6}\)