\(a+b+c=0\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Rightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)
Vậy ta có đpcm