Ta có : \(a+b+c=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\) ( 1 )
Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^3=0\)
\(\Rightarrow\left[\left(a+b\right)+c\right]^3=0\)
\(\Rightarrow\left(a+b\right)^3+c^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2=0\)
\(\Rightarrow\left(a+b\right)^3+c^3+3\left(a+b\right)\left[\left(a+b\right)c+c^2\right]=0\)
\(\Rightarrow\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)=0\)
\(\Rightarrow a^3+b^3+3a^2b+3ab^2+c^3+3\left(a+b\right)c\left(a+b+c\right)=0\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)=0\)
\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]=0\)
\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+cb+c^2\right)=0\)
\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left[\left(ab+ca\right)+\left(cb+c^2\right)\right]=0\)
\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)
\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\) ( 2 )
Thay ( 1 ) vào ( 2 ) ta được :
\(\Rightarrow a^3+b^3+c^3+3.\left(-c\right).\left(-a\right).\left(-b\right)=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
\(a^3 + b^3 + c^3 = (a+b)(a^2-ab+b^2) + 3ab(a+b) + c^3 - 3ab(a+b)\)
\(= (a+b)^3 + c^3 - 3ab(a+b)\)
\(= (a+b+c)(a^2 + 2ab + b^2 + ac + bc + c^2) - 3ab(a+b) \)
\(= 0 - 3ab(a+b)\)
Từ \(a+b+c = 0 => a+b = -c\)
Thay vào ta được : \(-3ab(a+b) = -3ab(-c) = 3abc\)
Lẹ hơn xíu ~