a) không giải pt, hãy tính hiệu các lập phương của các nghiệm lớn và nhỏ của pt: \(x^2-\frac{\sqrt{85}}{4}x+1\frac{5}{16}=0\)
b)với giá trị nào của các số nguyên a, các nghiệm của pt: \(ax^2+\left(2a-1\right)x+a-2=0\)là các số hữu tỷ
a) không giải pt, hãy tính hiệu các lập phương của các nghiệm lớn và nhỏ của pt: \(x^2-\frac{\sqrt{85}}{4}x+1\frac{5}{16}=0\)
b)với giá trị nào của các số nguyên a, các nghiệm của pt: \(ax^2+\left(2a-1\right)x+a-2=0\) là các số hữu tỷ
bài 1: chứng minh rằng biêu thức \(A=\left(7+4\sqrt{3}\right)^n+\left(7-4\sqrt{3}\right)^n\)nhận giá trị nguyên và không chia hết cho 13 với mọi giá trị nguyên của n.(sử dụng đồng dư thức)
Bài 2: Tìm số dư trong phép chia sau: (1995+1)(1995+2)...(1995+3990) chia cho 31995 (sử dụng quy nạp)
Bài 3: trong kì thi Olympic có 17 học sinh được mang số báo danh trong khoảng từ 1 đến 1000. Chứng tỏ rằng có thể chọn ra 9 học sinh có tổng các số ký dang được mang chia hết cho 9 (sử dụng nguyên lý direchlet)
Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :
\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .
Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :
\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .
Bài 4 : Cho các số dương a,b,c . Chứng minh :
\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1
Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)
Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2+4 và n2+16 là các số nguyên tố n chia hết cho 5
Cho biểu thức \(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\) .
a ) Rút gọn P
b ) Tìm giá trị lớn nhất của P
c ) Tìm x để \(Q=\frac{2\sqrt{x}}{P}\) nhận giá trị là số nguyên .
với giá trị nào của số nguyên p, các pt sau có nghiệm nguyên chung :
\(3x^2-ax+p-2=0\) và \(x^2-2xp+5=0\)
Với giá trị nào của số nguyên k , các nghiệm của phương trình sau là các số hữu tì :
\(kx^2+\left(2k-1\right)x+k-2=0\) .