PH

Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: A = a(a2 + 2b) + b(b2– a).

TH
7 tháng 3 2022 lúc 20:29

\(a+b=1\)

\(\Rightarrow a^2+2ab+b^2=1\)

\(\Rightarrow\left(a^2+b^2\right)+2ab=1\)

\(\Rightarrow2ab+2ab\le1\) (do \(a^2+b^2\ge2ab\))

\(\Rightarrow ab\le\dfrac{1}{4}\)

\(A=a\left(a^2+2b\right)+b\left(b^2-a\right)\)

\(=a^3+2ab+b^3-ab\)

\(=a^3+b^3+ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+ab\)

\(=1^3-3ab+ab=1-2ab\ge1-2.\dfrac{1}{4}=\dfrac{1}{2}\)

\(A_{min}=\dfrac{1}{2}\Leftrightarrow a=b=\dfrac{1}{2}\)

 

Bình luận (0)
NH
7 tháng 3 2022 lúc 20:32

\(a+b=1\Rightarrow a=\dfrac{1}{2}+x;b=\dfrac{1}{2}+y\left(x+y=0\right)\)

có: \(A=a\left(a^2+2b\right)+b\left(b^2-a\right)=a^3+b^3+ab=a^2+b^2\\ =\left(\dfrac{1}{2}+x\right)^2+\left(\dfrac{1}{2}+y\right)^2=\dfrac{1}{2}+x^2+y^2\ge\dfrac{1}{2}\)

\(\Rightarrow A_{min}=\dfrac{1}{2}\Leftrightarrow x=y=0\Leftrightarrow a=b=\dfrac{1}{2}\)

Bình luận (2)

Các câu hỏi tương tự
TU
Xem chi tiết
NQ
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
VQ
Xem chi tiết
LA
Xem chi tiết