ta có (a+b)5=\(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)(sử dụng tam giac paxcal)
\(\Rightarrow a^5+b^5=\left(a+b\right)^5-\left(5a^4b+10a^3b^2+10a^2b^3+5ab^4\right)\)
\(=\left(a+b\right)^5-5ab\left(a^3+2a^2b+2ab^2+b^3\right)\)
\(=\left(a+b\right)^5-5ab\left(a^3+3a^2b+3ab^2+b^3-a^2b-ab^2\right)\)
\(=\left(a+b\right)^5-5ab\left(\left(a+b\right)^3-ab\left(a+b\right)\right)\)
thay vào ta được kết quả là 211