Cho a, b > 0. CMR: 1/a + 1/b ≥ 4/(a + b) (✽)
Cách 1: Biến đổi tương đương
(✽) ⇔ (a + b)/ab ≥ 4/(a + b) , do a,b > 0 --> ab > 0 và a + b > 0, quy đồng 2 vế
⇔ (a + b)² ≥ 4ab
⇔ a² + 2ab + b² ≥ 4ab
⇔ a² - 2ab + b² ≥ 0
⇔ (a - b)² ≥ 0 luôn đúng ∀ a,b > 0
--> đpcm
Dấu " = " xảy ra ⇔ a = b
P/s: Em ko chắc đâu nhé
\(\Rightarrow a,b\ge1\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(=\frac{a}{a}+\frac{a}{b}+\frac{b}{b}+\frac{b}{a}\)
\(=1+\frac{a}{b}+1+\frac{b}{a}\)
\(=2+\frac{a}{b}+\frac{b}{a}\)
\(=2+\frac{a.a}{b.a}+\frac{b.b}{b.a}\)
\(=2+\frac{a^2+b^2}{b.a}\)
\(=\frac{2.a.b}{a.b}+\frac{a^2+b^2}{b.a}\)
\(=\frac{2.a.b+a^2+b^2}{a.b}\)
\(=2+a^2+b^2\)
Nếu :\(a=1;b=1\)
\(\Rightarrow2+a^2+b^2\ge4\left(đpcm\right)\)
Theo Cauchy ta có : \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\\\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\end{cases}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.\frac{2}{\sqrt{ab}}=4\)(đpcm)