A = 7+72 + 73 +....+ 7100
= (7+72) + (73 + 74)+.....+(799+7100)
= 7(1+7) + 73(1+7)+.......+799(1+7)
= 8(7+72+73+.....+ 799) chia hết cho 8
A = 7 + 72 + 73 + ... + 799 + 7100
A = ( 7 + 72 ) + ( 73 + 74 ) + ... + ( 799 + 7100 )
A = ( 1 + 7 ) . 7 + ( 1 + 7 ) . 73 + ... + ( 1 + 7 ) . 799
A = 8 . 7 + 8 . 73 + ... + 8 . 799
A = 8 . ( 7 + 73 + ... + 799 )
=> A chia hết cho 8 (đpcm)
giai
(7+7^2)+(7^3+7^4) + .................+(7^99+7^100)
7*(1+7) +7^3*(1+7)+.........+7^99*(1+7)
=8*(7+7^2+.........+7^99)
vi 8 nhan voi may cung chia het cho 8
=> 8*(7+7^2+............+7^99) chia het cho 8