Giả sử 5n+2 và 2n+7 cùng chia hết cho một số nguyên tố d(d€ N*)
=>5n+2˙:d;2n+7˙:d
=>2(5n+2)˙:d;5(2n+7)˙:d
=>5(2n+7)-2(5n+2)˙:d
=>10n+35-10n-4˙:d
=>31˙:d=>d=31
=>5n+2˙:31 và 2n+7˙:31
2n+7˙:31=>2n+7-31˙:31
=>2n-24˙:31=>2(n-12)˙:31
=>n-12˙:31(vì 2 và 31 nguyên tố cùng nhau)
=>n-12=31q(q€Z)
=>n=31q+12
=>A là ps tối giản thì n khác31q+12
n là số nguyên dương <2016
=>0<31q+12<2016
=>-12<31q<2004
=>-12/31<q<2004/31
=>0<=q<64,6
=>q nhận 65 gtrị để A là ps tối giản