Cho A= 4a^2b^2 - ( a^2 + b^2 -c^2 ). Trong đó a,b,c là độ dài 3 cạnh của 1 tam giác. Chứng minh A > 0
Gọi a,b,c là độ dài của một tam giác. Chứng minh \(\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\)
chứng minh 4a^2+b^2-4a+2b+5/2>0 với mọi a,b
chứng minh các bất đẳng thức:
1/ 4a(a+b)(a+1)(a+b+1)+b^2>=0
2/ 4a^2b^2>(a^2+b^2-c^2)^2 với a, b, c là độ dài ba cạnh của 1 tam giác
3/a/b+b/a>=2 với a^b>0
Cho \(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)trong đó a,b,c là độ dài bao cạnh của một tam giác. Chứng Minh Rằng \(A>0\)
Cho \(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\) trong đó a,b,c là độ dài ba cạnh của một tam giác.
Chứng minh rằng A>0
Cho M=(a^2 + b^2- c^2)^2-4a^2b^2
a) phân tích đa thức thành nhân tử
b) chứng minh a, b, c là số đo các cạnh của tam giác thì M < 0
Cho đa thức M=\(\left(a^2+b^2-c^2\right)-4a^2b^2\)
a)phân tích đa thức thành nhân tử
b)chứng minh nếu a,b,c là các cạnh của tam giác thìM<0
cho đa thức \(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
a)phân tích đa thức ra nhân tử
b)chứng minh nếu a,b,c là số đa các cạnh của tam giác thì M<0