NS

Cho A = (4. x^2)/(x+1) Viết biểu thức A dưới dạng tổng của 1 đa thức 1 phân thức với tử thức là 1 hằng số rồi tìm các giá trị nguyên của x để giá trị của biểu thức A cũng là số nguyên. MONG MỌI NGƯỜI GIÚP

AH
12 tháng 9 2021 lúc 4:10

Đề bài bạn viết hơi khó hiểu, nhưng có thể tạm giải như sau:

Lời giải:
$A=\frac{4x^2}{x+1}=\frac{4(x^2-1)+4}{x+1}=\frac{4(x-1)(x+1)+4}{x+1}$

$=4(x-1)+\frac{4}{x+1}$

Với $x$ nguyên thì:

$A\in\mathbb{Z}\Leftrightarrow 4(x-1)+\frac{4}{x+1}\in\mathbb{Z}$

$\Leftrightarrow \frac{4}{x+1}\in\mathbb{Z}$

$\Leftrightarrow x+1$ là ước của $4$

$\Rightarrow x+1\in\left\{\pm 1;\pm 2;\pm 4\right\}$

$\Rightarrow x\in\left\{-2; 0; -3; 1; 3; -5\right\}$

Bình luận (1)

Các câu hỏi tương tự
PB
Xem chi tiết
LM
Xem chi tiết
CT
Xem chi tiết
PP
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết