Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

BT

Cho A = 4 + 4^2 + 4^3 + ... + 4^23 + 4^24

        CMR : A chia hết cho 20 , A chia hết cho 21

MH
13 tháng 7 2017 lúc 21:31

A = \(4+4^2+4^3+.....+4^{23}+4^{24}\)

  = \(4\left(1+4+4^2\right)+.....+4^{22}+\left(1+4+4^2\right)\)

\(4.21+.....+4^{22}.21\)

\(21\left(4+...+4^{22}\right)⋮21\)

Vậy A chia hết cho 21

Ai k mik mik k lại nha

Bình luận (0)
HN
13 tháng 7 2017 lúc 21:44

Lâu r chị k nhớ lắm nhé

CM A chia hết cho 20

A = 4(1+4+4^2+...+4^23) chia hết cho 4 (1)

A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)

   = 4(1+4) + 4^3(1+4) +...+4^23(1+4)

   = (1+4)(4+4^3+4^5+...+4^23)

   =5.(4+4^3+4^5+...+4^23) chia hết cho 5 (2)

Mà UCLN(4,5)=1 (3)

Vậy A chia hết cho 4.5 =20

CM A chia hết cho 21

A = (4+4^2+4^3)+(4^4+4^5+4^6)+...+(4^22+4^23+4^24)

   = 4(1+4+4^2) +4^4(1+4+4^2)+...+4^22(1+4+4^2)

   = (1+4+4^2)(4+4^4+...+4^22)

   = 21(4+4^4+...+4^22) chia hết cho 21

Vậy A chia hết cho 24.

Chúc e học giỏi!

Bình luận (0)
UN
14 tháng 7 2017 lúc 7:30

CHia hết cho 21 thì bn làm giống bnMinh Hiền nha, còn chia hết cho 20 thì

A = 4 + 4^2 + 4^3 + ... + 4^23 + 4^24

A= (4+4^2)+(4^3+4^4)+...+ ( 4^23+4^24)

A= 20 + 4^2(4+4^2)+...+4^22(4+4^2)

A= 20 + 4^2.20 + ... + 4^22.20

A= 20( 1+4^2 +....+4^22) chia hết cho 20

=> A chia hết cho 20

Bình luận (0)
TH
27 tháng 1 2018 lúc 12:01

 A có 24 lũy thừa. 
Trước hết ta thấy rõ A chia hết cho 4 vì từng số hang của dãy số A chia hết cho 4 
A có 24 lũy thừa nên ta chia thành 12 cặp lũy thừa 
A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24) 
A = 4.(1+4) + 4^3.(1+4) + ...+ 4^23.(1+4) 
A = 4.5 + 4^3.5 + .....+ 4^23.5 
vậy A chia hết cho 5 và 4 nên A chia hết cho 20 

b) làm tương tự nhưng nhóm thành mỗi nhóm 3 lũy thừa ta được 8 nhóm lũy thừa 
A = 4.(1+4+4^2) + ......+ 4^22.(1+4+4^2) 
A = 4.21 + ......+4^22.21 => A chia hết 21 
c) A chia hết cho 20 và 21 mà 20 và 21 là nguyên tố cùng nhau nên 
A chia hết cho 20.21 = 420 (đpcm)

Bình luận (0)
TH
27 tháng 1 2018 lúc 12:07

 A có 24 lũy thừa. 
Trước hết ta thấy rõ A chia hết cho 4 vì từng số hang của dãy số A chia hết cho 4 
A có 24 lũy thừa nên ta chia thành 12 cặp lũy thừa 
A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24) 
A = 4.(1+4) + 4^3.(1+4) + ...+ 4^23.(1+4) 
A = 4.5 + 4^3.5 + .....+ 4^23.5 
vậy A chia hết cho 5 và 4 nên A chia hết cho 20 

b) làm tương tự nhưng nhóm thành mỗi nhóm 3 lũy thừa ta được 8 nhóm lũy thừa 
A = 4.(1+4+4^2) + ......+ 4^22.(1+4+4^2) 
A = 4.21 + ......+4^22.21 => A chia hết 21 
c) A chia hết cho 20 và 21 mà 20 và 21 là nguyên tố cùng nhau nên 
A chia hết cho 20.21 = 420 (đpcm)

Bình luận (0)
TH
27 tháng 1 2018 lúc 12:07

 A có 24 lũy thừa. 
Trước hết ta thấy rõ A chia hết cho 4 vì từng số hang của dãy số A chia hết cho 4 
A có 24 lũy thừa nên ta chia thành 12 cặp lũy thừa 
A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24) 
A = 4.(1+4) + 4^3.(1+4) + ...+ 4^23.(1+4) 
A = 4.5 + 4^3.5 + .....+ 4^23.5 
vậy A chia hết cho 5 và 4 nên A chia hết cho 20 

b) làm tương tự nhưng nhóm thành mỗi nhóm 3 lũy thừa ta được 8 nhóm lũy thừa 
A = 4.(1+4+4^2) + ......+ 4^22.(1+4+4^2) 
A = 4.21 + ......+4^22.21 => A chia hết 21 
c) A chia hết cho 20 và 21 mà 20 và 21 là nguyên tố cùng nhau nên 
A chia hết cho 20.21 = 420 (đpcm)

Bình luận (0)
LA
9 tháng 1 lúc 20:04

4+4²+4³+...+4²³+4²⁴

chứng minh A chia hết cho 22

 

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
PT
Xem chi tiết
HC
Xem chi tiết
AT
Xem chi tiết
TN
Xem chi tiết
NY
Xem chi tiết
PH
Xem chi tiết
LH
Xem chi tiết
MT
Xem chi tiết