a)
Ta có 3A=\(3^2+3^3+3^4+...+3^{2017}\)
3A-A=\(\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)
2A=\(3^{2017}-3\)
A=\(\frac{3^{2017}-3}{2}\)
b)
A=\(\frac{3^{2017}-3}{2}\)
2A=\(3^{2017}-3\)
2A+3=\(3^{2017}-3+3=3^{2017}\)
=>x=2017