\(A=3+3^2+...+3^{2008}\)
\(3A=3.\left(3+3^2+...+3^{2008}\right)\)
\(3A-A=\left(3^2+3^3+...+3^{2009}\right)-\left(3+3^2+...+3^{2008}\right)\)
\(2A=3^{2009}-3\)
\(2A+3=3^{2009}-3+3\)
\(2A+3=3^{2009}\)
Vì \(2A+3=3^x\)hay \(3^{2009}=3^x\)
\(\Rightarrow x=2009\)
Thank you to kick me ooooooooooooooooooo