Phép nhân và phép chia các đa thức

BN

Cho a-2b+3c=0 và a2+4b2+9c2=18

Tính P= a4 + 16b4 +81c4

NL
1 tháng 10 2020 lúc 16:16

Để đơn giản, đặt \(\left(a;-2b;3c\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2=18\end{matrix}\right.\)

Ta cần tính \(P=x^4+y^4+z^4\)

\(xy+yz+zx=\frac{\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{2}=-9\)

\(\Rightarrow2\left(x^2y^2+y^2z^2+z^2x^2\right)=\left(xy+yz+zx\right)^2-2xyz\left(x+y+z\right)=81\)

\(x^4+y^4+z^4=\frac{\left(x^2+y^2+z^2\right)^2-2\left(x^2y^2+y^2z^2+z^2x^2\right)}{2}=\frac{18^2-81}{2}=\frac{243}{2}\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
DT
Xem chi tiết
NL
Xem chi tiết
DL
Xem chi tiết