Mấy cái bạn này dễ thì làm đi, đừng có mà nói khoác, bạn anh ak mk ko biết nên ko giúp đc, tuy cũng lớp 6...
Mấy cái bạn này dễ thì làm đi, đừng có mà nói khoác, bạn anh ak mk ko biết nên ko giúp đc, tuy cũng lớp 6...
1) Viết dạng tổng quát cảu số tự nhiên chia 5 dư 1 chia 7 dư 5. Tìm số nhỏ nhất
2) Biết a,b là các số tự nhiên khác 0 và a+1/b và b+1/a có gái trị là số tự nhiên. Gọi d là ƯCLN của a,b. Chứng minh rằng a+b ngỏ hơn hoặc bằng b^2
3) Cho 2016 số tự nhiên: a1,a2,a3,...,a2016. Chứng minh rằng trong 2016 số tự nhiên ấy tồn tại 1 số hoặc tồn tại 1 vài số chia hết cho 2016
4) Cho góc xOy và góc yOz kề bù sao cho góc xOy bằng 4 lần yOz.
a) Tính số đo mỗi góc trên hình vẽ
b) Vẽ tia Ot sao cho góc xOt bằng 108 độ. Tính góc tOy
Bài 1:
a) Cho C = 4 + 4^2 + 4^3 + 4^4 + ... + 4^2015 + 4^2016 . Chứng minh C chia hết cho 21 và 105
b) Chứng minh rằng với mọi số tự nhiên khác 0 có số lượng các ước tự nhiên là một số lẻ thì số tự nhiên đó là số chính phương
Cho a1;a2;a3;a4;a5;.......;a2015 thuộc N (1;2;3;......;2015 là số thứ tự)
biết a1+a2+a3+.........+a2015=2015*2016
Chứng minh rằng a1^3 +a2^3 +a3^3 +...........+a2015^3 chia hết cho 6
Chứng minh rằng với mọi số tự nhiên n thì A=(n+2015).(n+2016) chia hết cho 2
a) chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4) (n+5) chia hết cho 2
b) chứng minh n+2012 và n+2013 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n.
a) Chứng tỏ rằng tổng 5 số tự nhiên liên tiếp thì chia hết cho 5
b) Chứng tỏ rằng ( n+2010)+(n+2011) luôn chia hết cho 2 với mọi n là số tự nhiên
Câu 1: Chứng tỏ rằng
a) (ab -ba) chia hết cho 9 ( với a> b )
b) Nếu ( ab+ cd) chia hết cho 11 thì abcd chia hết cho 11
Câu 2: Chứng tỏ rằng với mọi số tự nhiên n ta đều có
( n + 2012 2013) ( n+ 20131012) chia hết cho 2
Câu 3 : Cho A=1+3+32 + 33 + .................+ 31999 + 32000 .chứng minh A chia hết cho 13
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
a) Chứng tỏ rằng mọi số tự nhiên co3 chữ số đều chia hết cho 37
b) thấy a,b bằng cả chữ số thích hợp sao cho 24a68b chia hết cho 5
c) cho a là một số tự nhiên có dạng a=3b+7 ( b thuộc N ). hỏi a có thể nhận được những giá trị nào trong các giá trị sau? tại sao
a=11 , a=2002 , a=11570 , a=22789 , a=29653 , a=299537
d) tìm số tự nhiên nhỏ nhất biết rằng số đó chia cho 9 dư 5, chia cho 7 dư 4 và chia cho 5 thì dư 3
1) cho A=1+2013+2013^2+2013^3+2013^4+...+2013^98+2013^99 va B=2013^100-1
a) so sánh A và B
b) tìm chữ số tận cùng của A
c) chứng tỏ rằng 2012xA+1 là số chính phương