Vì a>2=>a=2+m, b>2=>b=2+n (m,n thuộc N*)
=>a.b=(2+m).(2+n)=2.(2+n)+m.(2+n)=4+2n+2m+mn=4+m+m+n+n+mn=(4+m+n)+(m+n+mn)=(2+m)+(2+n)+(m+n+mn)>(2+m)+(2+m)=a.b
=>ĐPCM
Vì a>2=>a=2+m, b>2=>b=2+n (m,n thuộc N*)
=>a.b=(2+m).(2+n)=2.(2+n)+m.(2+n)=4+2n+2m+mn=4+m+m+n+n+mn=(4+m+n)+(m+n+mn)=(2+m)+(2+n)+(m+n+mn)>(2+m)+(2+m)=a.b
=>ĐPCM
Cho 2 số hữu tỉ a và b thỏa mãn a+b=a.b =a/b Chứng minh a/b=a-1
Cho hai số tự nhiên a và b :
Chứng minh rằng \(a^2+b^2\) chia hết cho a.b khi và chỉ khi a = b
1)cho a/b=c/d chứng minh rằng a.b/c.d=(a+b)^2/(c+d)^2 . ( giúp mình với nha )
2)cho a/b=b/c chứng minh rằng a^2+b^2/b^2+c^2=a/c . ( giúp mình với nha )
Cho a,b thuộc N* , a>2 ;b>2. Chứng minh a+b<a.b
cho a/b=c/d chứng minh a.b/c.d=((a+b)^2/c+d)^2
Cho a>2, b>2.
a) Chứng minh a.b > a+b
b) Chứng minh a^2+b^2+c^2 ≥ ab+bc+ca
c) Chứng minh a^2+b^2+c^2+3 ≥ 2.(a+b+c)
d) Chứng minh a^2+b^2 ≥ 1/2 với a+b=1
e) Chứng minh a^2+b^2+c^2 ≥ 1/3 với a+b+c=1
cho a/b=c/d chứng minh:
a ) 5a+3b/5a-3b = 5c+3d
b) a^2+B^2/c^2+d^2=a.b/c.d
Câu 1: a. Cho 2 số tự nhiên a và b trong dó số a gồm 52 chữ số 1, số b gồm 104 chữ số 1. Hỏi tích a.b có chia hết cho 3 không ?, vì sao?
b. Số a gồm 31 chữ số 1, số b gồm 38 chữ số 1. Chứng minh rằng: (a.b - 2) chia hết cho 3
Chứng minh rằng: \(a^2+b^2\ge2.a.b.\)
Áp dụng cho \(A=\left(a+1\right).\left(b+1\right)\)trong đó \(a.b=1\)(trong đó a > 0, b > 0). Chứng minh rằng: \(A\ge4\)