\(A=1+3+3^2+3^3+...+3^{10}\)
=>\(3A=3\left(1+3+3^2+3^3+...+3^{10}\right)\)
=>\(3A=3+3^2+3^3+3^4+...+3^{11}\)
=>\(3A-A=\left(3+3^2+3^3+3^4+...+3^{11}\right)-\left(1+3+3^2+3^3+...+3^{10}\right)\)
=>\(2A=3^{11}-1\)
=>\(2A+1=3^{11}\)
=>\(n=3^{11}:3=3^{10}\)