Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Cho A = 1/3 + 1/3^2 + 1/3^3 + .....+ 1/3^2018 + 1/3^2019 . Tìm x để : [ 2A + 1/3^2019 ] . x = 2

XO
9 tháng 3 2020 lúc 10:01

Ta có A = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2019}}\)(1)

=> 3A = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)(2)

Lấy (2) trừ (1) theo vế ta có : 

3A - A = \(\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2019}}\right)\)

2A = \(1-\frac{1}{3^{2019}}\)

Khi đó : \(\left(2A+\frac{1}{3^{2019}}\right).x=2\)

\(\Leftrightarrow\left(1-\frac{1}{3^{2019}}+\frac{1}{3^{2019}}\right).x=2\)

\(\Rightarrow x=2\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
TN
Xem chi tiết
AH
Xem chi tiết
LH
Xem chi tiết
TN
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết
NB
Xem chi tiết