Gọi d là ước chung lớn nhất của a và b
\(\Rightarrow a⋮d;b⋮d\) \(\Rightarrow8a⋮d;b^2⋮d\) \(\Rightarrow b^2-8a⋮d\)
Ta có : \(a=1+2+3+...+n\)
\(\Rightarrow a=\frac{\left[\left(n-1\right)\div1+1\right]\left(n+1\right)}{2}\)
\(\Rightarrow a=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow a=\frac{n^2+n}{2}\)
\(\Rightarrow8a=\frac{n^2+n}{2}.8=4n^2+4n\) (1)
Ta có : \(b=2n+1\)
\(\Rightarrow b^2=\left(2n+1\right)^2=\left(2n+1\right)\left(2n+1\right)=4n^2+4n+1\) (2)
Từ (1) và (2) suy ra : \(b^2-8a=\left(4n^2+4n+1\right)-\left(4n^2+4n\right)=1\)
Mà \(b^2-8a⋮d\)
Do đó \(1⋮d\)
\(\Rightarrow d=1\)
Mà d là ước chung lớn nhất của a và b
Vậy a và b là 2 số nguyên tố cùng nhau