Cho a, b, c > 0. Chứng minh: \(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
Chứng minh rằng: \(\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\dfrac{1}{\left(a+b+c\right)^{2n+1}}\)
\(Cho 3 số đôi một khác nhau. Chứng minh rằng : \(\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}+\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}+\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}\) =\(2\left(\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{c-a}\right)\)\)
Hung nguyen
Cho a,b,c > 0 và có tổng bằng 1. Chứng minh \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)
Cho 2 số a, b thỏa mãn: \(2a^2\)+ \(\dfrac{1}{a^2}\)+ \(\dfrac{b^2}{4}\)= 4. Chứng minh rằng: ab ≥ -2
Cho các số thực dương xyz thỏa mãnx+y+z=3. Chứng minh rằng: \(\dfrac{1}{x^2+x}+\dfrac{1}{y^2+y}+\dfrac{1}{z^2+z}\ge\dfrac{3}{2}\)
Cho 0 < a < b < c < d. Chứng minh: \(\left(b+c\right).\left(\dfrac{1}{b}+\dfrac{1}{c}\right)< \dfrac{\left(a+d\right)^2}{ad}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
Chứng minh rằng:\(\dfrac{1}{a^{2017}}+\dfrac{1}{b^{2017}}+\dfrac{1}{c^{2017}}=\dfrac{1}{a^{2017}+b^{2017}+c^{2017}}\)
@Bùi Thị VânCho \(b\in N\)*, b < 1. Chứng minh \(\dfrac{1}{b}-\dfrac{1}{b+1}< \dfrac{1}{b^2}< \dfrac{1}{b-1}-\dfrac{1}{b}\)