Xét \(\dfrac{1}{b}-\dfrac{1}{b+1}=\dfrac{b+1-b}{b\left(b+1\right)}=\dfrac{1}{b\left(b+1\right)}\)
vì b+1 > b , b \(\in\) N sao , => b(b+1) >b2 => \(\dfrac{1}{b}-\dfrac{1}{b+1}< \dfrac{1}{b^2}\)
Xét \(\dfrac{1}{b-1}-\dfrac{1}{b}=\dfrac{b-b+1}{b\left(b-1\right)}=\dfrac{1}{b\left(b-1\right)}\)vì b>b-1
=> b2>(b-1)b => \(\dfrac{1}{b^2}< \dfrac{1}{b\left(b-1\right)}\)
Vậy\(\dfrac{1}{b}-\dfrac{1}{b+1}< \dfrac{1}{b^2}< \dfrac{1}{b-1}-\dfrac{1}{b}\left(đpcm\right)\)