Phép nhân và phép chia các đa thức

TN

Cho các số thực dương xyz thỏa mãnx+y+z=3. Chứng minh rằng: \(\dfrac{1}{x^2+x}+\dfrac{1}{y^2+y}+\dfrac{1}{z^2+z}\ge\dfrac{3}{2}\)

AH
26 tháng 2 2018 lúc 23:43

Lời giải:

Ta có:

\(A=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}=\frac{1}{x(x+1)}+\frac{1}{y(y+1)}+\frac{1}{z(z+1)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{y}-\frac{1}{y+1}+\frac{1}{z}-\frac{1}{z+1}\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)(1)\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x}+\frac{1}{1}\geq \frac{4}{x+1}\) và tương tự với các phân thức còn lại rồi cộng lại:

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+3\geq 4\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\Leftrightarrow \frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\leq \frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+3\right)(2)\)

Từ (1); (2) suy ra \(A\geq \frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1\right)\)

Mà theo BĐT Cauchy- Schwarz ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}=\frac{9}{3}=3\)

Do đó: \(A\geq \frac{3}{4}(3-1)=\frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=1\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
H24
Xem chi tiết
VQ
Xem chi tiết
VQ
Xem chi tiết
HC
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
TB
Xem chi tiết
VQ
Xem chi tiết