Phép nhân và phép chia các đa thức

KN

Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

Chứng minh rằng: \(\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\dfrac{1}{\left(a+b+c\right)^{2n+1}}\)

AH
21 tháng 4 2018 lúc 22:19

Lời giải:
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow \frac{a+b}{ab}=\frac{1}{a+b+c}-\frac{1}{c}=\frac{-(a+b)}{c(a+b+c)}\)

\(\Leftrightarrow (a+b)\left(\frac{1}{ab}+\frac{1}{c(a+b+c)}\right)=0\)

\(\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0\)

\(\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\)

\(\Leftrightarrow (a+b)(b+c)(c+a)=0\)

Ta sẽ cm \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}(*)\)

Thật vậy: \((*)\Leftrightarrow \frac{a^{2n+1}+b^{2n+1}}{(ab)^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}-\frac{1}{c^{2n+1}}\)

\(\Leftrightarrow \frac{a^{2n+1}+b^{2n+1}}{(ab)^{2n+1}}=\frac{-(a^{2n+1}+b^{2n+1})}{c^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}\)

\(\Leftrightarrow (a^{2n+1}+b^{2n+1})\left(\frac{1}{(ab)^{2n+1)}}+\frac{1}{c^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}\right)=0\)

\(\Leftrightarrow (a^{2n+1}+b^{2n+1}).\frac{c^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})+(ab)^{2n+1}}{(abc)^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}=0\)

\(\Leftrightarrow \frac{(a^{2n+1}+b^{2n+1})(c^{2n+1}+b^{2n+1})(c^{2n+1}+a^{2n+1})}{abc^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}=0\)

Thấy rằng

\((a^{2n+1}+b^{2n+1})(b^{2n+1}+c^{2n+1})(c^{2n+1}+a^{2n+1})=(a+b).X.(b+c).Y.(c+a).Z\)

\(=0\) (do \((a+b)(b+c)(c+a)=0\) )

Do đó đẳng thức $(*)$ cần chứng minh đúng.

-------------------

Ta tiếp tục chứng minh \(\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\frac{1}{(a+b+c)^{2n+1}}(**)\)

\(\Leftrightarrow a^{2n+1}+b^{2n+1}+c^{2n+1}=(a+b+c)^{2n+1}\)

Thật vậy:

\((a+b)(b+c)(c+a)=0\)\(\Rightarrow \left[\begin{matrix} a+b=0\\ b+c=0\\ c+a=0\end{matrix}\right.\)

Không mất tổng quát giả sử \(a+b=0\)

\(\Rightarrow \left\{\begin{matrix} a^{2n+1}+b^{2n+1}+c^{2n+1}=(-b)^{2n+1}+b^{2n+1}+c^{2n+1}=c^{2n+1}\\ (a+b+c)^{2n+1}=(0+c)^{2n+1}=c^{2n+1}\end{matrix}\right.\)

\(\Rightarrow a^{2n+1}+b^{2n+1}+c^{2n+1}=(a+b+c)^{2n+1}\)

Do đó $(**)$ đúng

Từ $(*)$ và $(**)$ ta có đpcm.

Bình luận (1)
HN
23 tháng 4 2018 lúc 8:32

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Xét \(a=-b\) thì ta có

\(\left\{{}\begin{matrix}\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{c^{2n+1}}\\\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\dfrac{1}{c^{2n+1}}\\\dfrac{1}{\left(a+b+c\right)^{2n+1}}=\dfrac{1}{c^{2n+1}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\dfrac{1}{\left(a+b+c\right)^{2n+1}}\)

Tương tự cho 2 bộ số còn lại ta được ĐPCM.

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
SN
Xem chi tiết
NN
Xem chi tiết
VP
Xem chi tiết
NN
Xem chi tiết
PM
Xem chi tiết
KN
Xem chi tiết
NL
Xem chi tiết
PP
Xem chi tiết