H24

Cho A = 1/2 - 1/3 + 1/4 - 1/5 + .... + 1/98 - 1/99

Chứng minh rằng 0,2 < A < 0,4

TQ
7 tháng 6 2017 lúc 16:58

Ta có: 

A = 1/2-1/3+1/4-1/5+1/6-1/7+ ..... +1/98-1/99 

=> -A = -1/2+1/3-1/4+1/5-1/6+1/7+ ..... -1/98+1/99 

=> -A = 1/2+1/3+1/4+1/5+ ... +1/98+1/99 - 2.(1/2+1/4+1/6+...+1/98) 

=> -A = 1/2+1/3+1/4+1/5+ ... +1/98+1/99 -(1+1/2+1/3+1/4+...+1/49) 

=> -A = -1+1/50+1/51+1/52+ ... +1/99 


Đặt: B = 1/50+1/51+1/52+ ... +1/99 

=> B = (1/50 +1/51+...+1/59) +(1/60+1/61+...+1/69) +(1/70+1/71+...+1/79) +(1/80+1/81+...+1/89) +(1/90+1/91+...+1/99) 

Do đó: 

10.(1/59)+10.(1/69)+10.(1/79) +10.(1/89)+10.(1/99) < B < 10.(1/50)+10.(1/60)+10.(1/70) +10.(1/80)+10.(1/90) 

=> 10.(1/60)+10.(1/70)+10.(1/80) +10.(1/90)+10.(1/100) < B < 10.(1/50)+10.(1/60)+10.(1/70) +10.(1/80)+10.(1/90) 

=> 1/6 +1/7 +1/8 +1/9 +1/10 < B < 1/5 +1/6 +1/7 +1/8 +1/9 

=> 0,6456 < B < 0,7456 

=> 3/5 < B < 4/5 

=> -2/5 < -1+B < -1/5 

=> -2/5 < -A < -1/5 

=> 1/5 < A <2/5

Bình luận (0)
TD
7 tháng 6 2017 lúc 17:36

làm gì dài dòng thế

A = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}\)

A = \(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)\)

Biểu thức trong dấu ngoặc thứ nhất bằng \(\frac{13}{60}\) nên lớn hơn \(\frac{12}{60}\), tức là lớn hơn 0,2,còn các dấu ngoặc sau đều dương, do đó A > 0,2

để chứng minh A < \(\frac{2}{5}\), ta viết :

A = \(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}\right)-\left(\frac{1}{7}-\frac{1}{8}\right)-...-\left(\frac{1}{97}-\frac{1}{98}\right)-\frac{1}{99}\)

Biểu thức trong dấu ngoặc thứ nhất nhỏ hơn \(\frac{2}{5}\), còn các dấu ngoặc sau đều dương, do đó A < \(\frac{2}{5}\)

Bình luận (1)
CZ
28 tháng 4 2020 lúc 9:34

A=(\(\frac{1}{2}\)\(\frac{1}{3}\)+\(\frac{1}{4}\)\(\frac{1}{5}\))+(\(\frac{1}{6}\)\(\frac{1}{7}\))+...+(\(\frac{1}{98}\)\(\frac{1}{99}\))

Biểu thức trong dấu ngoặc thứ nhất bằng1360 nên lớn hơn 1260,tức là lớn hơn 0,2,còn các dấu ngoặc sau đều dương,do đó A>0,2.

Để chứng minh A < 25,ta viết:A=(\(\frac{1}{2}\)\(\frac{1}{3}\)+\(\frac{1}{4}\)\(\frac{1}{5}\)+\(\frac{1}{6}\) )-( \(\frac{1}{7}\)\(-\frac{1}{8}\))+...+(\(\frac{1}{97}-\)\(\frac{1}{98}\))−\(\frac{1}{99}\)

Biểu thức trong dấu ngoặc thứ nhất nhỏ hơn 25,còn các dấu ngoặc đều dương,do đó A <25

Chúc bạn học giỏi!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TP
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
NP
Xem chi tiết
PM
Xem chi tiết
MK
Xem chi tiết
ND
Xem chi tiết
TT
Xem chi tiết
LH
Xem chi tiết