\(Cm:\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)< 2
Ta có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{49}{50}< 1< 2\)
=> A < 2
tk nha mn
Ta có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\) \(=1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\) \(=1+\left(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\right)< 1+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)\)
\(\Rightarrow A< 1+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(\Rightarrow A< 1+\left(\frac{1}{2}-\frac{1}{51}\right)=1+\frac{49}{102}< 1+1=2\) (Đpcm)
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
Ta có :\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
................
\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)(đpcm)