\(A=1+3+3^2+...+3^{101}\)
\(=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(=\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{99}\right)⋮13\)
A = 1 + 3 + 32 + .... + 3101
= [ 1+3+32 ] + ..... + [ 399 + 3100 +3101 ]
= [ 1+ 3+ 32 ] + .... + 399 . [ 1+3+32 ]
= 13. [ 1 + 33 + .... + 399 ] ⋮ 13
Đúng 1
Bình luận (1)