PT

cho A= 1+ 3 + 3 mũ 2 + 3 mũ 3 +......+ 3 mũ 101 chứng minh A chia hết cho 13

DH
21 tháng 10 2021 lúc 10:04

 \(A=1+3+3^2+...+3^{101}\)

\(=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)

\(=\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{99}\right)⋮13\)

Bình luận (1)
 Khách vãng lai đã xóa
NL
9 tháng 11 2021 lúc 11:00

 

\begin{aligned}
&A=1+3+3^{2}+3^{3}+\ldots+3^{101} \\
&A=\left(1+3+3^{2}\right)+\left(3^{3}+3^{4}+3^{5}\right)+\ldots+\left(3^{99}+3^{100}+3^{101}\right) \\
&A=\left(1+3+3^{2}\right)+3^{3} \cdot\left(1+3+3^{2}\right)+\ldots+3^{99} \cdot\left(1+3+3^{2}\right) \\
&A=\left(1+3+3^{2}\right)\left(1+3^{3}+\ldots+3^{99}\right) \\
&A=13 \cdot\left(1+3^{3}+\ldots+3^{99}\right): 13
\end{aligned}

Bình luận (0)
PD
14 tháng 11 2021 lúc 22:07

A = 1 + 3 + 32 + .... + 3101

= [ 1+3+32 ] + ..... + [ 399 + 3100 +3101 ]

= [ 1+ 3+ 32 ] + .... + 399  . [ 1+3+3]

= 13. [ 1 + 33 + .... + 399 ⋮ 13 

 

Bình luận (1)