NN

Cho A = 1 + 2 + 2 mũ 2 + 2 mũ 3 + …. + 2 mũ 2019

Chứng tỏ rằng A chia hết cho 3 và 7

NH
9 tháng 12 2023 lúc 21:39

             A = 1 + 2 + 22 + 23 + ... + 22019

   Xét dãy số: 0; 1; 2; 3;...;2019 dãy số trên là dãy số cách đều với khoảng cách là:

                        2 - 1 = 1

Số số hạng của dãy số trên là:

                      (2019 - 0) :  1 + 1 = 2020 (số hạng)

Vì 2020 : 2 = 1010  nên nhóm hai số hạng liên tiếp của A vào nhau ta được A: 

A = 1 + 2 + 22 + 23 +...+ 22019

A = (1 + 2) + (22 + 23) + ... + (22018 + 22019)

A = 3 + 22.( 1 + 2) + .... + 22018.(1 + 2)

A = 3. + 22.3 + .... + 22018.3

A = 3.( 1 + 22 + ... + 22018)

Vì 3 ⋮ 3 ⇒ A = 3.(1 + 22 + ... + 22018) ⋮ 3

Vì 2020 : 3  = 673 dư 1 nên nhón 3 hạng tử liên tiếp của A thành một nhóm thì A là tổng của 1 và 673 nhóm khi đó 

A = 1 + ( 2 + 22 + 23) + (24 + 25 + 26) + ... + (22017 + 22018 + 22019)

A = 1 + 2.( 1 + 2 + 22) + 24.(1 + 2 + 22) + ... + 22017.(1 + 2 + 22)

A = 1 + 2.7 + 24.7 + ... + 22017 . 7

A = 1 + 7.(2 + 24 + .... + 22017)

Vì 7 ⋮ 7; 1 không chia hết cho 7 nên A không chia hết cho 7

Việc chứng minh A ⋮ 7 là điều không thể xảy ra.

 

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
TT
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
GK
Xem chi tiết
NM
Xem chi tiết
SN
Xem chi tiết
PH
Xem chi tiết