Với a > 0, b > 0 ta có:
a < b ⇒ a.a < a.b ⇒ a 2 < ab (1)
a < b ⇒ a.b < b.b ⇒ ab < b 2 (2)
Với a > 0, b > 0 ta có:
a < b ⇒ a.a < a.b ⇒ a 2 < ab (1)
a < b ⇒ a.b < b.b ⇒ ab < b 2 (2)
Cho a > 0, b > 0, nếu a < b, hãy chứng tỏ: a 2 < b 2 và a 3 < b 3
Cho a + b + c = 0 và a.b.c khác 0. Chứng tỏ rằng a2/ bc + b2/ ca + c2/ ab = 3
Cho a > 0, b > 0, a < b . Chứng minh
a) a^2 < ab và ab < b^2 b) a^2 < b^2 và a^3 < b^3
1.a)Cho các số dương a,b,c có tích bằng 1.Chứng minh rằng (a+1)(b+1)(c+1) lớn hơn hoặc bằng 8.
b)Chocacs số a và b không âm.Chứng minh rằng (a+b)(ab+1) lớn hơn hoặc bằng 4ab.
2.Cho các số dương a,b,c,d có tích bằng 1.Chứng minh rằng a bình +b bình +c bình +d bình +ab+cd lớn hơn hoặc bằng 6.
3.Chứng minh rằng nếu a+b+c>0.abc>0.ab+bc+ca>0 thì a>0,b>0,c>0.
cho a+b =1 và ab khác 0. Chứng minh a/b^3-1 + b/a^3-1 =2(ab-2)/a^2.b^2+3
Cho a>0, b>0 và ab=1 Chứng minh (a^2/b)+(b^2/a)+[8/(a^2+b^2+6)]>=3
cho a+b=1 và ab#0. chứng minh a/b^2-1 + b/a^3-1=2(ab-2)/a^2b^2+3
Cho a và b không đồng thời bằng 0
Chứng minh \(\dfrac{a^2-ab+b^2}{a^2+ab+b^2}\ge\) \(\dfrac{1}{3}\)
Chứng minh rằng nếu a > 0 , b > 0 , c > 0 v à a < b thì a b < a + c b + c