9-\(4\sqrt{5}=5-4\sqrt{5}+4=\left(\sqrt{5}-2\right)^2\\ \)
=>\(\sqrt{9-4\sqrt{5}}=\left(2-\sqrt{5}\right)\)=> điều cần phải chứng minh
9-\(4\sqrt{5}=5-4\sqrt{5}+4=\left(\sqrt{5}-2\right)^2\\ \)
=>\(\sqrt{9-4\sqrt{5}}=\left(2-\sqrt{5}\right)\)=> điều cần phải chứng minh
Chứng minh đẳng thức sau:
\(\frac{a+\sqrt{2+\sqrt{5}}.\sqrt{\sqrt{9-4\sqrt{5}}}}{\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}}-\sqrt[3]{a^2}}+\sqrt[3]{a}}=-\sqrt[3]{a-1}\)
Chứng minh bất đẳng thức sau:
\(\left(\sqrt[3]{\sqrt{9+4\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}}\right).\sqrt[3]{\sqrt{5-2}}-2,1< 0\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh
\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)
\(c,2\sqrt{2}\left(3-\sqrt{2}\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
\(e,\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
\(f,\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
Chứng minh
\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)
\(c,2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
\(e,\left(3+\sqrt{5}\right)\left(10-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
\(f,\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
a) \(\left(2+\sqrt{3}\right)\cdot\sqrt{7-4\sqrt{3}}\)
b) \(\sqrt{4+2\sqrt{3}}-\sqrt{5+2\sqrt{6}}+\sqrt{2}+\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
c) \(\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
cho x=\(\left(\dfrac{\sqrt[3]{8-3\sqrt{5}}+\sqrt[3]{64-12\sqrt{20}}}{\sqrt[3]{57}}\right)\sqrt[3]{8+3\sqrt{5}}\);y=\(\left(\dfrac{\sqrt[3]{9}-\sqrt{2}}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\sqrt{2}-9\sqrt[3]{9}}{\sqrt[4]{2}-\sqrt[3]{81}}\right)\)
a rút gọn x và y
b tính T = xy
chứng minh
\(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)
\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)
Giải các phương trình sau:
\(\sqrt{\frac{4}{9-4\sqrt{5}}}+\sqrt{\frac{9}{9+4\sqrt{5}}}\)
\(\left(5-4\sqrt{3}\right):\frac{2+\sqrt{3}}{2-\sqrt{3}}\)
\(\sqrt{\left(2-\sqrt{5}\right)^2}.\sqrt{\frac{1}{\sqrt{5}-2}}\)