8x+9y=48\(\Leftrightarrow\)9y=48-8x\(\Leftrightarrow\)y=\(\dfrac{48-8x}{9}\)
Thay vào biểu thức:
P=xy=x.\(\dfrac{48-8x}{9}\)=\(\dfrac{48x-8x^2}{9}\)=\(\dfrac{72-8x^2+48x-72}{9}\)=\(\dfrac{72-8\left(x^2-6x+9\right)}{9}=8-\dfrac{8\left(x-3\right)^2}{9}\)
Vì \(\dfrac{8\left(x-3\right)^2}{9}\ge0\) nên 8-\(\dfrac{8\left(x-3\right)^2}{9}\le8\)
Hay P\(\le\)8
Vậy PMax=8 xảy ra dấu = khi x=3