TV

 Cho 7 số tự nhiên bất kì . CMR ta luôn chọn được 4 số có tổng chia hết cho 4 

NC
17 tháng 6 2015 lúc 16:29

Giải:

Đặt 7 số TN đó là A, B, C, D, E, F, G. Lấy kết quả của bài 1: Trong 3 số tự nhiên bất kỳ luôn có 2 số là số chẵn ( chia hết cho 2)

 

                A,  B,     C   Và   D, E, F    mỗi nhóm có 1 cặp chia hết cho 2

    

* Giả thử (A+B) =2 m  và  (D+E)=2n --> (A+B) + (C+D)= 2(m+n)

     

                     Còn 3 số   C     F    G  sẽ có 1 cặp chia hết cho 2

 

                                     ( C + F) = 2 p    Với m,n,p cúng là số tự nhiên

 

Trong 3 số m, n, p  luôn chọn được 2 số có tổng chia hết cho 2.

 

*Giả thử (m + n) =2 q  ( q là số TN) thì ta có

 

     (A+B) + (C+D)= 2(m+n) = 4q  ==> A+B+C+D chia hết cho 4 (ĐPCM)

 

Bình luận (0)
G1
9 tháng 9 2016 lúc 19:34

Giải:

Đặt 7 số TN đó là A, B, C, D, E, F, G. Lấy kết quả của bài 1: Trong 3 số tự nhiên bất kỳ luôn có 2 số là số chẵn ( chia hết cho 2)

                A,  B,     C   Và   D, E, F    mỗi nhóm có 1 cặp chia hết cho 2

    

* Giả thử (A+B) =2 m  và  (D+E)=2n --> (A+B) + (C+D)= 2(m+n)

     

                     Còn 3 số   C     F    G  sẽ có 1 cặp chia hết cho 2

                                     ( C + F) = 2 p    Với m,n,p cúng là số tự nhiên

Trong 3 số m, n, p  luôn chọn được 2 số có tổng chia hết cho 2.

*Giả thử (m + n) =2 q  ( q là số TN) thì ta có

     (A+B) + (C+D)= 2(m+n) = 4q  ==> A+B+C+D chia hết cho 4 (ĐPCM)

Tương tự nếu chon các nhóm số khác ta cũng được 4 số trong 7 số bât kỳ trên chia hết cho 4

Bình luận (0)
ND
22 tháng 10 2016 lúc 15:51

bài 1 ở đâu ra?????????

Bình luận (0)
NN
4 tháng 3 2020 lúc 21:04

lỡ cả ba số đó đều lể thì sao

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
VH
Xem chi tiết
KC
Xem chi tiết
NL
Xem chi tiết
HM
Xem chi tiết
PU
Xem chi tiết
BP
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NQ
Xem chi tiết