Bài 1 : Cho 7 số tự nhiên bất kì. CMR bao giờ cũng có thể chọn ra 2 số có hiệu chia hết cho 6
Bài 2 : CMR trong 6 số tự nhiên liên tiếp luôn tìm được hiệu 2 số chia hết cho 5
Bài 3 : Cho 3 số lẻ. CMR tồn tại 2 số có tổng và hiệu chia hết cho 8
cho 52 số tự nhiên bất kì ,CMR luôn tồn tại trong đó 2 số có tổng hoặc hiệu chia hết cho 100
cho 5 số tự nhiên bất kỳ cmr tồn tại 3 số có tổng chia hết cho 3
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
CMR trong 7số tự nhiên bất kì tồn tại 4 số sao cho tổng 4 số đó chia hết cho 4
Chứng minh rằng : Trong 5 số tự nhiên bất kì bao giờ cũng tồn tại 3 số có tổng chia hết cho 3 .
CMR trong 39 số tự nhiên liên tiếp bất kì luôn tồn tại một số có tổng các chữ số chia hết cho 11
giải bằng cách lớp 6 nhé
Bài 163 (33-SNC). Cho 5 số tự nhiên lẻ bất kì, chứng tỏ rằng ta luôn chọn được bốn số có tổng chia hết cho 4 . Bài 164 (33-SNC). Viết 6 số tự nhiên vào 6 mặt của một con xúc xắc. Chứng tỏ rằng khi ta gieo xúc xắc xuống mặt bàn thì trong 5 mặt có thể nhìn thấy bao giờ cũng tìm được một hay nhiều mặt để tổng các số trên mặt đó chia hết cho 5 . Bài A. Cho 2021 số tự nhiên bất kì, chứng tỏ rằng trong đó tồn tại 1 số chia hết cho 2021 hoặc tồn tại 1 vài số có tổng chia hết cho 2021. Bài B. Cho một hình vuông cạnh bằng 5 và chia thành 25 hình vuông kích thước 1 x 1. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau. Bài C. Biết 997 là số nguyên tố lớn nhất , nhỏ hơn 1000. Chứng minh rằng tồn tại số tự nhiên có dạng 111...1 chia hết cho 997.
CMR: trong 42 số tự nhiên bất kì luôn tồn tại 2 số có hiệu chia hết cho 41