H24

cho 5 số tự nhiên bất kì . CMR ta luôn chọn được 3 số có tổng chia hết cho 3

NN
21 tháng 8 2016 lúc 16:29

Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2 

Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3. 

Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3

số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3. 

Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.

Bình luận (0)
UN
21 tháng 8 2016 lúc 16:27

ọi 5 số bất kì là a1,a2,a3,a4,a5

theo dirichle tồn tại ít nhất 2 số có cùng số dư khi chia cho 3

TH1 : có ít nhất 3 số có cùng số dư khi chia cho 3 thì tổng 3 số đó chia hết cho 3

TH2 :chỉ có 2 số có cùng số dư khi chia cho 3 

GS a1≡a2≡r(mod 3);a3≡a4(mod 3)

nếu r=0 thì a1+a3+a5 chia hết cho 3

nếu r=1 thì a3=3k+2 or a3=3k nên a1+a3+a5 chia hết cho 3

tương tự với r=2

Bình luận (0)
NN
21 tháng 8 2016 lúc 16:28

Gọi 5 số bất kì là a1,a2,a3,a4,a5

Theo dirichle tồn tại ít nhất 2 số có cùng số dư khi chia cho 3

TH1 : có ít nhất 3 số có cùng số dư khi chia cho 3 thì tổng 3 số đó chia hết cho 3

TH2 :chỉ có 2 số có cùng số dư khi chia cho 3 

GS a1 = a2 = r ( mod3 ) ; a3 = a4 ( mod3 )

Nếu r = 0 thì a1 + a3 + a5 chia hết cho 3

Nếu r = 1 thì a3 = 3k + 2 or a3 = 3k nên a1 + a3 + a5 chia hết cho 3

Tương tự với r = 2

Bình luận (0)
H24
21 tháng 8 2016 lúc 16:29

mod 3 là gì vậy

Bình luận (0)
TT
4 tháng 9 2016 lúc 10:28

(mod 3) có nghĩa là một số a khi chia cho 3 được số dư b thì ta nói a đồng dư với b theo modun 3 (mod 3)

Bình luận (0)
NH
15 tháng 1 2022 lúc 22:14

Nhìn r ảo

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
NC
Xem chi tiết
WB
Xem chi tiết
GM
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết