Bài này ko xuất hiện số 0 nên tính toán nhẹ được 1 nửa
Lập được \(P_5^3=60\) số
Do vai trò của các chữ số là như nhau, nên số lần xuất hiện của mỗi chữ số ở mỗi hàng (trăm, chục, đơn vị) là như nhau. Có 60 số và 5 chữ số, vì thế, ở mỗi hàng mỗi chữ số sẽ xuất hiện \(60:5=12\) lần (ví dụ như số 2 sẽ xuất hiện ở hàng đơn vị tổng cộng 12 lần, ở hàng trăm cũng 12 lần...)
Do đó tổng giá trị các chữ số ở hàng đơn vị là:
\(12.1+12.2+12.3+12.4+12.6=12\left(1+2+3+4+6\right)=192\)
Ở hàng chục, giá trị của 1 chữ số gấp 10 lần hàng đơn vị (ví dụ số 32 thì số 2 chỉ có giá trị là 2, nhưng ở số 23 thì số 2 có giá trị là 20), do đó, tổng giá trị các chữ số ở hàng chục là:
\(10.\left(12.1+12.2+12.3+12.4+12.6\right)=10.12\left(1+2+3+4+6\right)\)
Tương tự, tổng giá trị ở hàng trăm là:
\(100.12.\left(1+2+3+4+6\right)\)
Tổng các chữ số lập được là:
\(\left(1+10+100\right).12.\left(1+2+3+4+6\right)=21312\)
Tổng quát: cho n chữ số 1,2,... (ko xuất hiện chữ số 0), lập các số tự nhiên có m<n chữ số khác nhau, vậy tổng lập được là:
\(\underbrace{11...1}_{\text{m chữ số 1}}\times\dfrac{P_n^m}{n}\times(1+2+...)\)