ZZ

Cho \(4a^2+b^2=5ab\)với 2a>b>>0 

Tính số trị của phân thức \(F=\frac{ab}{4a^2-b^2}\)

TN
8 tháng 2 2017 lúc 21:55

Từ \(4a^2+b^2=5ab\Rightarrow4a^2+b^2-5ab=0\)

\(\Rightarrow4a^2-ab-4ab+b^2=0\)

\(\Rightarrow a\left(4a-b\right)-b\left(4a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}\Rightarrow}\orbr{\begin{cases}a=b\\a=\frac{b}{4}\end{cases}}\)

*)Xét \(a=b\) thì \(F=\frac{b^2}{4b^2-b^2}=\frac{b^2}{3b^2}=\frac{1}{3}\)

*)Xét \(a=\frac{b}{4}\) thì \(F=\frac{\frac{b^2}{4}}{\frac{b^2}{4}-b^2}=-\frac{1}{3}\)

Bình luận (0)
TV
5 tháng 11 2017 lúc 9:54

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

Bình luận (0)

Các câu hỏi tương tự
PM
Xem chi tiết
NH
Xem chi tiết
GV
Xem chi tiết
VQ
Xem chi tiết
VQ
Xem chi tiết
H24
Xem chi tiết
VQ
Xem chi tiết
NN
Xem chi tiết
CL
Xem chi tiết