MD

Cho 4 số a;b;c;d thỏa mãn điều kiện b2=ac; c2=bd. Chứng minh \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

 

OO
5 tháng 12 2015 lúc 20:25

  \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}vàc^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

                           Áp dụng tính chất dãy tỉ số bắng nhau

Do đó :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)1

Vì :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{c}{b}=\frac{b}{a}=\frac{c}{d}\Rightarrow\frac{c}{b}=\frac{b}{c}=\frac{a}{d}\)2

Từ 1 và 2 => Ta có điều phải chứng minh

         TICK MÌNH NHA !

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
DD
Xem chi tiết
PN
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
TK
Xem chi tiết
ND
Xem chi tiết
TD
Xem chi tiết
HP
Xem chi tiết